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Modeling the dynamics of double-diffusive 
scalar fields at various stability conditions 
K. Hanjalid* and R. Musemid  t 
Faculty of Appl ied Physics,* Delft Universi ty of Technology, Delft, The Netherlands, 
and Ma~inski fakultet, t Univers i ty  of Sarajevo, Bosnia and Hercegovina 

This paper presents some results of mathematical modeling and numerical computation of 
the dynamics of the temperature and concentration fields in simulated salt-gradient solar 
ponds, which are commonly used for collection and long-term storage of solar- and 
otherwise-generated heat. The pond has been treated as a two-layer, double-diffusive 
system, infinite in the horizontal plane, initially stably stratified by downward salinity 
gradient and with a uniform (or stably stratified) temperature distribution, which has been 
subjected to stratification disturbance by supplying heat from the bottom. The method of 
simulation employs a two-equation model of turbulence with variable turbulent 
PrandtI-Schmidt numbers, modified to account for thermal and mass buoyancy. The 
predictions obtained agree well with several sets of experimental data available in the 
literature. © 1997 by Elsevier Science Inc. 
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Introduction 

Two-layer, nonconvective solar salt ponds represent a convenient 
and efficient way for collection and long-term storage of the 
available heat in solar energy systems and in other types of 
storage space heating, as well as in process engineering and 
energy conversion technologies. Their storage performance is 
based on the separation of the upper cold fresh water from the 
hot salty layer beneath it by a natural diffusive (molecular) 
interface, which prevents upward loss of accumulated heat from 
the bottom layer. Hence, the characteristics of the thermal 
resistance of the diffusive interface and its stability, govern, to a 
large extent, the salt pond operation. 

A solar salt pond is a typical example of a double-diffusive 
system, found in nature (oceans and salty lakes) and in many 
areas of engineering, in which a strong density stratification 
dominates the transport processes (metal solidification and crys- 
tal growth, heavy gas storage, handling, etc.). The stratification is 
usually expressed in terms of density increment AO = Apt + 
Aps = p0(-ot AT + 13 AS), where a = -1/po(Op/OT) s and 13 = 
1/po(Op/aS)r denote the volume expansion coefficients caused 
by unit temperature and concentration changes, respectively. The 
double-diffusive systems can be characterized by two or more 
layers of fluid of different densities separated by a (molecular) 
diffusive interface, as indicated in Figure 1. The bottom layer is 
well mixed because of the unstable stratification usually caused 
by direct or indirect (e.g., solar radiation) heating of the pond 
bottom. Unstable stratification generates turbulence, which pro- 
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motes intensive mixing and local upward convection in the lower 
layer, which tends to spread upwards working against the usually 
stable concentration gradient. Depending on the ratio of the 
bottom heat flux and concentration gradient, the lower mixed 
layer can either overtake the whole fluid, or remain trapped 
below the diffusive interface. The upper layer may also be well 
mixed because of convection or mechanical (e.g., wind shear) 
turbulence production locally or elsewhere in the layer (Figure 
lb). Such situations arc found in oceans, where several turbulent, 
well-mixed, layers may exist, separated one from another by 
sharp interfaces through which intensive transport of heat and 
salt occurs (Turner 1965). However, in solar ponds and in many 
other cases, the upper fluid remains nonturbulent and often 
stagnant, dominated by molecular transport (Figure la). 

In the literature there are simple theories (e.g., Turner 1965; 
Fernando 1989) that correlate the principal integral properties of 
the double-diffusive systems (the criteria for the establishment of 
the double-layer system and its stability; the dynamics of bottom 
mixed-layer growth, etc.). However, none of these theories gives 
the possibility to predict details of the temperature and concen- 
tration fields and their interaction. 

The approach described here is based on the modeled differ- 
ential equations for turbulent fluxes of heat and species, which, 
in conjunction with mean momentum, enthalpy, and concentra- 
tion equations enables prediction of velocity, temperature, and 
concentration fields under different stability conditions, and from 
which all relevant integral properties can be deduced. A simpli- 
fied form of turbulence closure, truncated to a common form of 
two-equation model, but modified to account for thermal and 
mass buoyancy, produced results that are in acceptable agree- 
ment with experimental data of several authors. The paper 
presents the basic theory and compares a range of predicted 
results with experimental data. 
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Figure 1 Schematic o'f a two-layer salt-stratified pond 
heated from below; a, upper layer unmixed; b, both layers 
well-mixed 

A second-moment closure for double-diffusive 
systems: the rationale 

Although integral relationships can be useful for estimating the 
basic properties of double-diffusive systems, the mathematical 
modeling and numerical c, omputations of field properties (tem- 
perature, concentration, and density fields) in differential form 
yields much more aceurate and detailed predictions of all rele- 
vant parameters. It is knovm that models of turbulence of various 
levels of complexity have been successful in predicting turbulent 
flows and transport phenomena in different situations, especially 
if the process is dominated by shear. However, in the case of 
buoyancy-driven turbulent motion, there are several phenomena 
originating from the strong coupling and mutual interaction 
between the temperature, concentration and velocity fields that 

must be considered. A particular challenge arises in modeling 
the turbulent transport in mixed layers such as those found in 
solar ponds, where the mean temperature and concentration 
fields are almost uniform. Here, the conventional gradient hy- 
pothesis, by which the turbulent fluxes are modeled in terms of 
the mean property gradients, fails to produce sensible results, 
because it yields very small or negligible vertical turbulent fluxes. 
It should be pointed out that these fluxes, generated by buoy- 
ancy, are significant in magnitude, representing the major cause 
of upward turbulent convection and mixing so that the almost 
uniform temperature and concentration distributions are the 
consequence, not the cause, of the vertical turbulent fluxes. A 
proper mathematical representation should employ a higher- 
order modeling approach, such as implied by differential 
stress/flux turbulence models or, at least, some simplified vari- 
ant that gives a more general representation of the turbulent 
diffusion than is provided by simple gradient hypothesis. Another 
important feature of the double-diffusive systems is a significant 
influence of molecular interactions within the diffusive interface 
and in its vicinity, regardless of the intensity of turbulence in the 
mixed layers. This makes it necessary to include the molecular 
effects in all turbulence equations. 

In the absence of a significant mean fluid motion and with 
the assumption that the transport of all properties is one- 
dimensional (in vertical direction, denoted by z), the mean 
energy (in terms of temperature T), and mean concentration (S), 
equations can be written 

P ~ = ~ ~ az O) 
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concentration buoyancy parameter, g~(k/B) 20S/Oz 
thermal buoyancy parameter, got(k/e) 20T/Oz 
empirical coefficients in the turbulence model 
damping functions in the turbulence model 
gravitation vector 
layer thickness 
kinetic energy of turbulence 
Prandfl number, v/eL 
scalar/mechanical turbulence time scale ratio, 

-6"i8 /2k8o = ~8 /2k8 s 
Ra Rayleigh number 
R s Turner's stabilil~ parameter, ~ A S / a  AT 
Re t turbulence Reynolds number, kE/v8 
s turbulent fluctuation of salt concentration 

variance of turbulent concentration fluctuations 
su~ turbulent mass flux vector 
S mean salt cono~ntration 
t time coordinate 
T mean temperature 
ui turbulent fiuctuation of the velocity vector 
U/ mean velocity vector 
u~ffj turbulent stress tensor 

w vertical velocity fluctuations 
x~ space coordinates 
X stability parameter, a qb/kfS(OS/Oz) 
z vertical coordinate directed upward 

Greek 

OL thermal expansion factor, - (1 /po)(ap/aT)  s 
concentration expansion factor, (1/po)(ap/aS) r 

e dissipation rate of the turbulence kinetic energy k 

8 0 dissipation rate of the temperature variance 0-~ 

e s dissipation rate of the concentration variance 
8ai dissipation rate of the turbulent heat flux ~//  
8s, dissipation rate of the turbulent concentration flux ~ /  
%, dissipation rate of the scalar cross-correlation 
~, ~0 homogeneous parts of e and 8 o 
0u i turbulent heat flux vector 
0s single-point correlation of temperature and concentra- 

tion fluctuations 
0 2 temperature variance 
h thermal conductivity 
Ix dynamic viscosity 
v kinematic viscosity 
p fluid density 
(r turbulent Prandtl-Schmidt number for a turbulent 

property 
time 
empirical coefficients in the turbulence model 

d~ general notation for the fluctuation of a scalar 
general notation for the fluctuation of a scalar 

Subscripts 

0 characteristic, reference value 
eft effective 
m mixed layer 
S concentration field 
t turbulent 
T thermal field 
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az  
(2) 

where f~ and f~ are the functions of turbulent Reynolds number 
Re t = pk2/(p.e) 

Second-moment closure formally entails the solution of the dif- 
ferential transport equations for the turbulent fluxes of heat and 
species ~ and ~-~, respectively. For a unidirectional transport in 
the vertical direction and under the assumption that the vertical 
normal stress component w 2 is proportional to be turbulence 
kinetic energy, the flux equations reduce to: 

f~ = exp[ -3 .4 / (1  + 0.02 Ret )2] 

and 

f~ = 1 - 0.3 exp( -Ret 2) 

(11) 

aw--6 a ( ~o___~f a ~ )  
at az ~ ~r~ XZ 
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1 OT e 
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(3) 

1 OS s 
- ~ p k  -~z - Cs~p -k ws (4) 

where 

k 2 

~ f  = ~ + ~t  ~ t  = C ~ f ~ p  - -  (5) 

The equation set above contains empirical coefficients CT: Cr2, 
Cs: and Cs2 ~ as a consequence of modeling the terms involving 
the fluctuating pressure. The practice introduced by Gibson and 
Launder (1976) for pure thermal field was adopted and extended 
to the concentration field by assuming a complete analogy of the 
physical behaviour between the two scalar fields. 

The closure of Equations 3 and 4 requires solution of an 
additional set of transport equations for turbulence properties, 
such as the temperature and concentration variances ~ and ~ ,  
the correlation between the fluctuating temperature, and con- 
centration ~ and for the turbulence kinetic energy k and its 
dissipation rate e. A plausible closed set of equations can be 
written as follows: 

/ 1 
P a---t- = a--z 1 cr~ Oz ] - 2pw-0 0-~ - ~ r  Pk  0 (6) 

o . . . . ,  0t az [ ~ 

- -  a ( ~ f  a ~ )  a0s = Tz - - W  
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The formulation of the above closure model implies several 
assumptions that need further argument. First, attention is drawn 
to the diffusion terms that are modeled by the conventional 
effective eddy-diffusivity expression. A more general, invariant 
expression for the turbulent diffusion can be derived by trunca- 
tion of the corresponding differential transport equation for 
triple moments. 

(13) 

where do and # may stand for any fluctuating property, 0, s, u i, 
aui/OXm, O0/OXm, OS/OXm, etc. It is noted that the last two 
terms are not of diffusive nature for the dependent variable do0, 
but represent additional source terms. In the 1-D case, assuming 
that w-'~at k and neglecting the last term (or last two terms, 
depending upon the meaning of the variables dO and ~), expres- 
sion 13 reduces to the above eddy-diffusivity hypothesis. It should 
be noted that the transport equations for triple moments also 
contain buoyancy terms that act as source or sink of triple 
moments. Although it is recognized that these terms may be of 
significance in strongly stratified flows, they have been neglected 
in the present work, in line with the adopted simplification of 
Equation 13. 

The function f~(Re t) of Launder and Sharma (1974) is added 
to ensure a damping of the velocity fluctuations normal to the 
wall and to the interfacial layer caused by joint molecular and 
wall/free surface blockage effects, as is usually done in near-wall 
shear flows. Admittedly, the damping mechanisms are different: 
close to the bottom wall and to the top free surface, the major (if 
not the only) damping will come from the wall/surface blockage 
and pressure reflection; whereas, at the interfacial layer the 
major effect will be caused by molecular forces. In the present 
case, we are not much interested in the near-wall region, so the 
possible inadequacy of f~ in modeling the blockage effect is not 
important. The focus of the present analysis is the layer interface 
where the molecular effects are dominant. It seems, therefore, 
justified to use an f~ function expressed in terms of turbulence 
Reynolds number Ret, although the form (Equation 1), which 
was kept for convenience, may not be fully adequate, because it 
was tuned for near-wall flows where the blockage effect was also 
present. 

Similar arguments apply to the function f~(Ret), which was 
tuned in conjunction with f~ within the framework of the low-Re 
number k -e  model to account primarily for viscous effects on 
the energy decay, both in near-wall and wall-distant flow regions. 
It should be noted that in fluids with Prandtl numbers very 
different from unity, both damping functions should include the 
effects of Pr numbers. In the present case, dealing with water 
solutions, the use of turbulent Reynolds number alone seems 
sufficient. 
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Finally, attention is drawn to the last term in Equations 3, 4, 
and 6 to 8, which represent the sink of dependent variables. In 
Equations 6 and 7 these terms replace the scalar dissipation rates 
s 0 and 8,, which could be supplied from separate transport 
equations. The transport equations for these two variables con- 
tain at least twice as many terms as the s equation. Modeling of 
various terms in the transport equations for s 0 and s, and 
determining unavoidable empirical coefficients is burdened with 
a high uncertainty because of lack of experimental or otherwise 
available data (e.g., direclt numerical simulation [DNS]). The 
need for these equations was eliminated by adopting constant 
(and equal) ratios of scalar-to-mechanical time-scales; i.e., 

the model, which is an extended variant of the conventional 
low-Re number k-s  turbulence model, but upgraded in several 
respects on the basis of the above listed full second-order model 
to account for most of the mentioned specific effects. The reason 
for adopting this model is its suitability for incorporation into 
generally available three-dimensional (3-D) numerical codes for 
solving the Navier-Stokes equation in more complex situations, 
such as those in real engineering or natural systems. 

The model used here solves the mean energy and concentra- 
tion Equations 1 and 2, but closure is accomplished by the 
standard form of gradient expressions for turbulence fluxes of 
heat and species: 

0-~ s ~ s 
R = 0.8 

s 0 2 k  e~ 2k 

from which e 0 and 8~ were deduced. This assumption determines 
t - -  P the coefficients C r - C  s =: 1.6. It should be noted that recent 

DNS of some simple flows with heat transfer indicated that R 
varies considerably over the flow domain, especially in flows 
dominated by buoyancy (e.g., GrSzbach and WSrner 1992), but 
numerical computations of several thermal buoyant flows with 
the solution of e0-equation and with e 0 deduced from R = const 
show relatively small difference in the reproduction of mean 
velocity and temperature field (Hanjali6 1994). These findings, 
together with the mentioned uncertainties in modeling equations 
for 8 o and e s, as well as a desire to simplify the model to the 
form that can be used for computation of double-diffusive phe- 
nomena in complex geometries, lead to adopting R = const in 
the present work. 

The sink terms in Equations 3 and 4 originate mainly from 
the scrambling effect of pressure fluctuations, which tend 
to isotropize the turbulence field and diminish the correla- 
tions between velocity and scalar fluctuations ~ and w-s. 
Another contribution comes from the molecular dissipation e0~ a 
(O0/Oxk )(Oui/Ox k) and e:: i a (OS/OXk )(OUl/OX k) of each corre- 
lation, respectively. The assumption of local isotropy of the 
small-scale turbulence at high-Reynolds numbers and away from 
a solid or free surface implies that s0~ and ss~ are negligible, but, 
admittedly, they can be important in the region of interfacial 
layer. A way to account for these effects is to define coefficients 
Crl and Csl as functions of turbulent Reynolds number and 
scalar flux anisotropy. In the present work, we have assumed that 
the low-Re number modifications of equations for e and k will 
account for these effects. 

Equation 8 contains no pressure term, and the molecular 
destruction s0s a (O0//OXk)(Oq$//dXk) is the only sink of the 
correlation. For that reason sos cannot be neglected, and in the 
present work, we have modeled this term, as shown in Equation 
8. Because of lack of experimental or DNS evidence, this appar- 
ent inconsistency cannot be explained at present, except by 
assumption that the fluctuations in two scalar fields are more 
correlated in between at small scales, than with the velocity 
fluctuations. 

Model truncation: a two-equation closure 

The above equations make a closed set that could be solved 
numerically for the prescribed geometry and boundary and initial 
conditions. However, it should be noted that for complex geome- 
tries solving the second-moment turbulence models may pose 
serious computational demands, and the full model may not be 
suitable for application in more complex situations, except for 
1-D or boundary-layer-type flows. Hence, in the present phase 
of our work, we have confined ourselves to a still simpler form of 

~t OT ~t OS 
w--'0 = ~ . . . .  (14) 

p~r} Oz p~r~ OZ 

In this way, we have eliminated the need to solve Equations 3, 4, 
and 6-8, and have solved only Equations 9 and 10, which 
supplied k and e, used to specify the turbulent viscosity coeffi- 
cient P.t and to define the turbulence time-seale x = k / e .  How- 
ever, in order to eliminate the mentioned deficiency of the 
gradient transport hypothesis, implied by Equations 14, correc- 
tive buoyancy parameters have been introduced, by extending to 
the concentration field the approach introduced by Gibson and 
Launder (1976) for the thermal buoyant field. This method first 
involves the truncation of the full differential transport equations 
for turbulent fluxes of heat and species ~ and w's, respectively, 
into an algebraic expression for these quantities. This is accom- 
plished by eliminating the differential terms (the difference be- 
tween the mean-flow convection and total diffusion of fluxes). 
The algebraic expressions can be reduced further to the form of 
Equations 14, in which the turbulent Prandtl-Schmidt numbers 
tr~ and tr~ become variable in terms of the thermal and species 
"buoyancy parameters," B r and B s, respectively, i.e.: 

ap 1 + ¢P'r(C'r - epr )B  r - ~p'rC'rB s 

a~ = "~T 1 + ¢ ( ¢ r B  r - aPsB s)  (15) 

ap 1 + ~P's ( C's - eP s ) Bs - aP'sC'r B r  

cr~ = ~ss 1 + dP(dPrB r - dPsB s)  (16) 

where 

[ k ~ 2 0T  [ k 't 2 0 S  
(17) 

and ~,  qbr, ~ - ,  ~s, and ~ are the additional empirical coeffi- 
cients specified in Table 1. It should be noted that all the 
coefficients in the equations describing the thermal field have 
been optimized earlier with reference to pure thermal convection 
(e.g., Hanjali~ and Vasi6 1993). Because of the scarcity of experi- 
mental or DNS data for isothermal flows driven by mass buoy- 
ancy by unstable concentration stratification, the coefficients in 
the concentration equations could not be determined independ- 
ently. It was expected that a full analogy would exist between the 
two scalar fields, save for Prandtl-Schmidt numbers. However, 
an attempt to use the same coefficients in analogue terms in the 
species concentration equations resulted in acceptable agree- 
ment with experiments for some cases considered, but failed to 
reproduce those at the edge of stability of the interfacial layer, 
resulting invariably in the flow laminarization. Better results 
were achieved by adjusting the coefficient Cs2 to 0.9 (as com- 
pared with Cr2 = 0.6). In addition, the coefficient with the new 
source term in the dissipation equation C~4, was determined on 
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the basis of testing the present model against a double- 
diffusive experiments described later. 

Although expressions 14 imply, at first glance, that the turbu- 
lent fluxes will tend to zero if the mean profiles of temperature 
and concentration are close to uniform, it should be pointed out 
that these gradients appear both in the nominators and denomi- 
nators of the expressions for cry- and try. Hence, even small 
values of these gradients make a sufficient contribution and 
substantially increase the turbulent exchange coefficient ~t and, 
as shown later, secure reasonably good predictions of both the 
temperature and concentration field in the mixed layers. 

The coefficients in the equations have the following values (in 
addition to the standard coefficients for the isothermal flows) 
C~ = 0.09, Q1 = 1.44, C~2 = 1.92 and tr~ = 1.3 (Table 1). 

Numerical method 

The modeled equation set was solved numerically using a general 
two-dimensional finite-volume Navier-Stokes code, which was 
adapted for 1-D unsteady computation. A collocated numerical 
grid was used for all variables with typically 100 grid points 
clustered around the layer interface and close to the bottom wall 
and free surface. A first-order, fully implicit scheme was applied 
for time marching, with the starting step roughly one order of 
magnitude smaller than the Brunt-V~iils~ila frequency of the 
system. A second-order accurate central differencing scheme was 
used for the discretization of the diffusion terms. Depending 
upon the boundary conditions, in some cases the time-step was 
increased in the course of computations. Typically, several 
thousand time integrations were needed to cover the field 
evolution of laboratory experiments considered, but most of the 
runs took less than a few hours (and some considerably less) on a 
Hewlett-Packard 715 workstation. 

Results and Discussion 

To demonstrate the predictive ability of the model proposed, and 
to optimize the new coefficient C~4, we have selected the experi- 
mental results of Bergman et al. (1985b), in which an initially 
isothermal, almost linear, salt-stratified, 180-mm deep water so- 
lution, placed in a square container, was heated from below. The 
initial stratification was achieved by filling the container with 
several layers of solutions of different concentrations (in decreas- 
ing salinity from bottom to top) and left for a few days until the 
molecular diffusion smoothed from step-like concentration pro- 
file into an almost linear one. 

Heat supplied at the bottom will cause unstable stratification 
in the lower layer that will be opposed by the stable salt concen- 
tration gradient. Therefore, the stability and growth of the mixed 
layer that is formed will depend upon the ratio of the heat flux q 
and the concentration gradient #S/az. Bergrnan et al. (1985b, 
1986) defined a nondimensional stability parameter as 

Ra T ct qb 
X = - -  (18) 

Ra s k13(OS/Oz) 

and performed a series of experiments for different values of X. 
Here Rar and Ra s are the temperature and concentration 
Rayleigh numbers. (Turner (1965, 1968) used the ratio of density 

Table 1 Summary of coefficients 

C~3 C~4 C'T=C's Cr l=Csl  Cr2 CS2 4) 4)r=4)s 4)'T=(5'S 

0.8 1.2 1.6 3.2 0.6 0.9 0.22 0.33 0.155 

difference across the diffusive interface caused by salinity and 
temperature, R s = 13 AS/(oL AT) as a stability parameter.) We 
have selected three different experiments (Nos. 2, 5, and 7) 
corresponding to values of X of 0.112, 0.369, and 0.825. The 
corresponding concentration gradients are -19.1, -5.8, and 
-29.3%/m, and the bottom heat flux qb = 40, 40, and 450 
W / m 2, respectively. These three experiments are representative 
combinations of the two dominant external parameters, X and q, 
which govern a double diffusive system. 

The first integral properties to be discussed illustrate the 
dynamics of the growth of the bottom mixed layer. We first 
consider the variation of the layer thickness h (mm) with time T 
for three different values of the stability parameters. After pre- 
senting data in h 2 -  • plot it, was found that for all three 
considered cases, both the experiments and the predictions 
follow a quadratic relationship of the following form: 

h 2 = K(X) 'r  + b (19) 

As might be expected, the mixed layer grows faster in time 
with an increase in the bottom heat flux or with a decrease in the 
concentration gradient. Hence, the slope of each individual curve 
increases with the stability parameter X, and, as seen in Figure 2, 
this relationship is almost linear, so that h2/X  plotted against 
time collapses almost into one line, (except for some experimen- 
tal and computational scatter). This finding confirms the earlier 
theory of the mixed-layer growth of Turner (1968), which was 
partially substantiated by his own experiments. The constant b in 
the equation has a small value, and its appearance is probably a 
consequence of incomplete adequacy of the form of relationship 
19. The present predictions agree particularly well for the two 
experiments with small stability parameter; whereas, in the case 
of experiment No. 7, where the stability parameter is close to its 
upper limit, the agreement is somewhat poorer. Still, the overall 
agreement might be regarded as satisfactory. 

Figure 3 shows the variation of the temperature (not normal- 
ized) in the mixed layer against time. Again, both the experi- 
ments and predictions follow a similar (quadratic) dependence, 
AT 2 at % but the agreement between the measured and pre- 
dicted slopes is satisfactory only for experiment No. 5, which 
corresponds to the minimum concentration gradient considered. 
The disagreement can be attributed to several factors, first to the 
inadequacy of the employed model and to the treatment of the 
bottom boundary conditions. However, the disagreement in 
Figure 3 is perhaps overemphasized by the way the data are 
plotted and attributable to the fine resolution of the quadratic 
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Figure 6 Time-evolution of the temperature profiles after 
the onset of heating, symbols: measurements Bergman et al. 
( 1 9 8 5 a )  lines: predictions 

temperature scale. As can be seen in Figure 4, comparison of the 
evolution of temperature profiles in time shows much better 
agreement. Analogous plots of the evolution of the concentra- 
tions in the mixed layer is not presented, because the paper cited 
did not present measured data. However, in those cases, the 
model also gave a quadratic form of relationship; i.e., S~ ct x, as 
found by Turner (1968). 

We turn now to another set of experimental data of Bergman 
et al. (1985a). An initial, step-like salinity profile with bottom 
layer of uniform salinity topped by a fresh water layer of equal 
depth was left for 26 hours to diffuse molecularly, and then 
subjected to bottom heating with a uniform heat flux of 500 
(W/mE). Figure 5 shows the evolution of the concentration 
profiles in time caused by the molecular diffusion. The experi- 
mental curve for • = 26 (h) agrees well with computation, as 
would be expected, because only molecular transport occurs. 
However, the more important findings are displayed in Figures 6 
and 7, which show computed temperature and concentration 
profiles at several subsequent time instants when the transport in 
the bottom layer becomes fully turbulent. Again, for comparison, 
experimentally obtained curves for x = 5 h (after the onset of 
beating) were plotted on both graphs showing reasonable agree- 
ment (note a fine resolution of the temperature and concentra- 
tion scales), demonstrating that the model employed could be 
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Figure 7 Time-evolution of the salinity profiles after the 
onset of heating, symbols: measurements Bergman et al. 
(1985a), lines: predictions 

Int. J. Heat and Fluid Flow, Vol. 18, No. 4, August 1997 365 



Dynamics of double-diffusive scalar fields." K. Hanjafi~ and R. Musemi~ 

regarded as satisfactory. Unlike the thermal field, to which heat 
is continuously supplied from below, the concentration field is 
fully conservative, so that changes in the concentration level in 
the mixed layer are obviously much smaller than changes in the 
temperature level. This says nothing, however, about possible 
differences in the thermal and salinity structure that may exist, 
but are intractable with single-point statistical models. The ap- 
parently faster diffusion of energy into the upper nonturbulent 
layer than the diffusion of salinity does not have much to do with 
possible deficiencies in the model but reflects only a substantial 
difference in the molecular diffusivity of the thermal and concen- 
tration fields. 

Finally, we consider a case with two fully turbulent mixed 
layers separated by a sharp diffusive interface, as explored exper- 
imentally in the pioneering work of Turner (1965). In contrast 
with the previous case, both the upper and lower layers are made 
turbulent by mechanical stirring, (this was repeated during the 
experiment until the convection in the upper layer was estab- 
lished), while the interface was artificially maintained for a 
period of time by inserting a thin sheet between the layers. 

To simulate such an experiment, we started computations 
with high levels of turbulence in each layer, but artificially fixed 
zero value for the turbulent kinetic energy at the midpoint of the 
diffusive interface (this restriction was removed after the process 
evolved for some time). The computations, carried out for a 
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series of different initial density differences between the two 
layers, showed expected behaviour, as can be seen from a sample 
of results presented in Figures 8 to 10, where the profiles of 
temperature, concentration, and turbulence Reynolds number at 
different time instants are plotted. 

No detailed experimental data are available for comparison. 
However, to illustrate the broad agreement with measurements, 
in Figure 11, we compare Turner's stability parameter (the ratio 
of density differences attributable to salinity and temperature) 
R s = f ~ A S / e t A T  versus  the total density difference Ap = ct AT+ 
13 AS for a number of computed cases with experimental data. 
Despite the large scatter, there is reasonable agreement between 
the predicted and measured correlation, especially at small 
stratification. 

C o n c l u s i o n s  

A modified version of the eddy-diffusivity k-e, low-Re number 
turbulence model with variable  turbulent Prandtl-Schmidt num- 
bers for heat and species in terms of buoyancy parameters B r 
and B s has been derived by truncating the modeled differential 
transport equations for turbulent fluxes of heat and species. The 
model yields broadly satisfactory predictions of the time evolu- 
tion of temperature, concentration, density, and turbulence field, 
as well as the dynamics of some integral properties in several 
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cases of double-diffusive salt-stratified ponds subjected to bot- 
tom heating. The model also reproduces the time evolution of 
the integral properties (height of the bottom mixed layer and its 
bulk mean temperature axld concentration) in accordance with 
the general relationships introduced earlier by Turner (1965, 
1968). 

Admittedly, the model has many empirical coefficients, which 
are unavoidable, because many terms in the transport equations 
must be modeled. The coefficients in the equations for mechani- 
cal and thermal turbulence properties initially were taken over 
from earlier studies of flows dominated purely by thermal buoy- 
ancy. The expectation th~tt complete equivalence should exist 
between the set of coefficients for the two scalar fields, (temper- 
ature and concentration) was not fulfilled, however, at least 
within the framework of the two-equation model adopted. Opti- 
mum agreement for all the considered test cases was achieved 
only after two of the coefficients in the equation for the concen- 
tration flux were re-adjusted. Further studies and model calibra- 
tions are needed, preferably of systems dominated solely by 
concentration buoyancy, to clarify possible differences between 
the buoyant thermal and concentration fields, for which new 
experimental or DNS data are required. Also, better insight into 
the effects of mixed terms, particularly of the double-scalar 
correlation ~ is needed before a more general model for 
double-diffusive systems can be designed. 
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